How to setup Kimi K2.5 on a single NVIDIA RTX 6000 Pro 96GB GPU
This guide shows how to setup and run Kimi K2.5 on a server system with a single Nvidia RTX 6000 Pro 96GB GPU system and run it at 20 Tokens per second speed.
Server configuration
Motherboard: Gigabyte MZ33-AR1
CPU: AMD EPYC 9755 ZEN5 TURIN 128 Core/256 Threads 1.9-2.7ghz, L3 512M
RAM: 768GB DDR5 at 4800Mhz (12x64GB)
GPU: NVIDIA RTX 6000 Pro Workstation 96GB GPU
SSD: WD_BLACK SN850X 8TB M.2 2280 PCIe Gen4 SSD
OS: Ubuntu 24.04.2 LTS
Prerequisites
Before starting, ensure you have:
-
KT-Kernel installed:
Note: Latest KTransformers' EPLB feature for Kimi-K2.5 will be supported soon.
git clone https://github.com/kvcache-ai/ktransformers.git git checkout kimi_k2.5 git submodule update --init --recursive cd kt-kernel && ./install.sh
-
SGLang installed - Follow SGLang integration steps
Note: Currently, please clone our custom SGLang repository:
git clone https://github.com/kvcache-ai/sglang.git git checkout kimi_k2.5 cd sglang && pip install -e "python[all]" // maybe need to reinstall cudnn according to the issue when launching SGLang pip install nvidia-cudnn-cu12==9.16.0.29
-
CUDA toolkit - Compatible with your GPU (CUDA 12.8+ recommended)
-
Hugging Face CLI - For downloading models:
pip install huggingface-hub
Step 1: Download Model Weights
# Create a directory for models mkdir -p /path/to/models cd /path/to/models # Download Kimi-K2.5 (RAW-INT4 for both CPU and GPU) huggingface-cli download moonshotai/Kimi-K2.5 \ --local-dir /home/user/models/Kimi-K2.5
Note: Replace /home/user/models/Kimi-K2.5 with your actual storage path throughout this tutorial.
Step 2: Launch SGLang Server
Start the SGLang server with KT-Kernel integration for CPU-GPU heterogeneous inference.
Launch Command (4x RTX 4090 Example)
python -m sglang.launch_server \ --host 0.0.0.0 \ --port 10002 \ --model /home/user/models/Kimi-K2.5 \ --kt-weight-path /home/user/models/Kimi-K2.5 \ --kt-cpuinfer 120 \ --kt-threadpool-count 1 \ --kt-num-gpu-experts 30 \ --kt-method RAWINT4 \ --kt-gpu-prefill-token-threshold 400 \ --reasoning-parser kimi_k2 \ --tool-call-parser kimi_k2 \ --trust-remote-code \ --mem-fraction-static 0.94 \ --served-model-name Kimi-K2.5 \ --enable-mixed-chunk \ --tensor-parallel-size 1 \ --enable-p2p-check \ --disable-shared-experts-fusion \ --context-length 131072 \ --chunked-prefill-size 131072 \ --max-total-tokens 150000 \ --attention-backend flashinfer'
It takes about 2~3 minutes to start the server.
See KT-Kernel Parameters for detailed parameter tuning guidelines.
Step 3: Send Inference Requests
Once the server is running, you can send inference requests using the OpenAI-compatible API.
Basic Chat Completion Request
curl -s http://localhost:31245/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Kimi-K2.5",
"stream": false,
"messages": [
{"role": "user", "content": "hi, who are you?"}
]
}'
Example Response
{
"id": "2a4e83f8a79b4b57b103b0f298fbaa7d",
"object": "chat.completion",
"created": 1769333912,
"model": "Kimi-K2.5",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": " The user is asking \"hi, who are you?\" which is...",
"reasoning_content": null,
"tool_calls": null
},
"logprobs": null,
"finish_reason": "stop",
"matched_stop": 163586
}
],
"usage": {
"prompt_tokens": 32,
"total_tokens": 317,
"completion_tokens": 285,
"prompt_tokens_details": null,
"reasoning_tokens": 0
},
"metadata": {
"weight_version": "default"
}
}
Crate a service file
If it runs properly, you can create a sercie file to run it as an Ubuntu service
/etc/systemd/system/kimi25.service:
[Unit]
Description=Kimi 2.5 Server
After=network.target
[Service]
User=user
WorkingDirectory=/home/user/kimi2.5
Environment="CUDA_HOME=/usr/local/cuda-12.9"
Environment=LD_LIBRARY_PATH="/usr/local/cuda-12.9/lib64:${LD_LIBRARY_PATH:-}"
ExecStart=bash -c 'source /home/user/miniconda3/bin/activate kimi25; \
python -m sglang.launch_server \
--host 0.0.0.0 \
--port 10002 \
--model /home/user/models/Kimi-K2.5 \
--kt-weight-path /home/user/models/Kimi-K2.5 \
--kt-cpuinfer 120 \
--kt-threadpool-count 1 \
--kt-num-gpu-experts 30 \
--kt-method RAWINT4 \
--kt-gpu-prefill-token-threshold 400 \
--reasoning-parser kimi_k2 \
--tool-call-parser kimi_k2 \
--trust-remote-code \
--mem-fraction-static 0.94
--served-model-name Kimi-K2.5
--enable-mixed-chunk \
--tensor-parallel-size 1 \
--enable-p2p-check \
--disable-shared-experts-fusion \
--context-length 131072 \
--chunked-prefill-size 131072 \
--max-total-tokens 150000 \
--attention-backend flashinfer'
Restart=on-failure
TimeoutStartSec=600
[Install]
WantedBy=multi-user.target
References
Ktransformers Kimi-K2.5 setup instructionsKT-Kernel Parameters
Conclusion
You have now successfully configured Kimi K2.5 to run on a single NVIDIA RTX 6000 Pro 96GB GPU, achieving approximately 20 tokens per second inference speed. By leveraging the KT-Kernel's CPU-GPU heterogeneous inference capabilities combined with SGLang, you can efficiently serve this large language model on a single workstation-class GPU. The systemd service configuration ensures your deployment remains stable and automatically restarts on failure. For production deployments, consider monitoring GPU and CPU utilization to optimize the --kt-cpuinfer and --kt-num-gpu-experts parameters based on your specific workload patterns.